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Abstract
Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered

D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical

ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as

the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the

narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase

diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of plat-

inum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed

inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order para-

meters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional

short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is

bulk-like.
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Introduction
Pt–Rh is an important alloy due to its catalytic activity in

different reactions. In the past it was assumed that Pt–Rh is

immiscible at low temperatures [1,2], but theoretical studies

revealed that Pt–Rh forms the intermetallic phases 40 and D022

[3], which are thermodynamically stable below room tempera-

ture according to a recently published theoretical phase diagram

[4] (see Figure 1 for the 40 and D022 structures).

Boundaries in a bulk phase diagram are well defined in the case

of the thermodynamic limit ( ), where

first-order phase transitions are indicated by singularities in the

grand canonical potential [5]. In the case of finite systems,

however, the thermodynamic limit cannot be used, and as a

consequence there are no sharp first-order phase transitions in

the canonical and the grand canonical ensemble [6] and there-
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Figure 1: The structure of the ordered phases with Strukturbericht
designation “D022” (prototype structure: Al3Ti, space group: I4/mmm,
No. 139) and “40” (space group: I41/amd, No. 141). “40” is an uncon-
ventional designation, which has been used in the context of studies
on the Pt–Rh alloy since the prediction of the phase in [3] as no Struk-
turbericht designation or prototype exists. The structure was identified
in 1971, without a specific name being assigned, as an antiferromag-
netic ground state of the Ising model with certain ratios of the first- and
second-nearest-neighbor interactions on a face-centered cubic lattice
[29].

fore different theories are needed in order to describe small

systems. The thermodynamics of small systems has been devel-

oped by Hill as early as 1963 [6], but recently regained interest

due to its applicability in modern nanoscience and engineering.

The theory was recently redeveloped on a more intuitive foun-

dation [7] under the term “nanothermodynamics” [8] by the

same author. Recent microcanonical approaches pioneered by

Gross et al. [9,10] explore the topology of the entropy surface

S(E,Ni) as a function of the energy E and the particle number N.

Studying the entropy surface in the microcanonical ensemble

can be a useful theoretical tool, because convex intruders of the

entropy can be used as a concept to assign first-order transi-

tions even in finite systems, and additional quantities, such as

the interface tension between phases, become accessible [9]. A

quantitative assessment of the entropy surface is in principle

possible by the Wang–Landau algorithm [11] but a tedious task

for a more complex Hamiltonian. Furthermore, the choice of the

microcanonical ensemble corresponds to a completely isolated

system, which does not exchange energy with its environment.

Such conditions are experimentally possible [10], but hard to

realize and clearly not satisfied for the case of nanoparticles in

equilibrium with their substrate.

Phase equilibria between solid and liquid phases in binary alloy

particles were, for example, investigated for Cu–Ni [12], Sn–Bi

[13], Pb–Bi [14] and other eutectics [15-17], as well as for

miscible alloys [18-20]. In addition, there are some studies

related to the phase diagrams of solid–solid phase equilibria of

alloys with a miscibility gap [21-23]. Such a case has also

recently been experimentally studied for the case of Au–Pt [23].

More general thermodynamic treatments of phase separation in

nanoparticles were given by Wautelet et al. [22] and Norskov et

al. [21]. The latter authors focused especially on phase equi-

libria of immiscible Ag–Cu nanoparticles by means of Monte

Carlo simulations and found that for all studied alloys phase

separation becomes impossible below a certain critical size at

any temperature [21]. Significantly fewer studies are found on

ordering nanoalloys. Recently, a study on the equilibrium

ordering properties of Au–Pd bulk and nanoalloys was

published by Atanasov and Hou [24]. Ordering Fe–Pt nanoal-

loys were studied by means of lattice Monte Carlo simulations

[25].

However, as far as we know, a complete size-dependent phase

diagram of an ordering nanoalloy has not yet been studied. It is

our intention to examine such a size-dependent phase diagram

by using the model system of Pt–Rh particles and thereby

extending our previous results for bulk Pt–Rh to the nano

regime. We will first give a short review of the refined BOS

mixing model. This model will then be parameterized for Pt–Rh

particles. The resulting phase diagrams for three different

particle sizes will finally be discussed. We address the question

of how to interpret a two-phase equilibrium in the particle, and

the effects related to surface segregation are examined. Further-

more, we evaluate the Warren–Cowley short-range order (WC-

SRO) parameters in order to investigate the order–disorder

phase transitions in the particles. These parameters prove to be

useful in order to assign a critical temperature to the smooth

phase transitions in this finite system.

Method
The refined BOS mixing model
We use a standard Metropolis Monte Carlo algorithm that

implements a simulation model that is closely related to the

“Bond Order Simulation” (BOS) Mixing model [26]. We have

applied this model before in order to calculate the bulk phase

diagram of Pt–Rh and to examine the ordering behavior [4].

In our refined version of the BOS mixing model the lattice

energy is given by a sum over the site energies

(1)

The site energies  depend on the type Ti of the atom, its

total first-neighbor coordination Zi and its number of unequal

first to fourth nearest neighbors Mi. The site-energies are given

by the following expressions in our model:
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(2)

(3)

Here the  and  are on-site constants that bear the depen-

dency on the total coordination Z of first nearest neighbors. The

remaining  with n = 1, …, 4,  and  are used to

describe the atomic interactions between different species of

atoms. M1, …, M4 are the number of unequal first to fourth

nearest neighbors for the corresponding atom. The sum terms

are the linear interactions up to the fourth nearest neighbor,

while the last terms in the site-energies are nonlinear terms, that

only apply to first neighbors. Such nonlinear terms are neces-

sary in order to model asymmetric phase diagrams. In the case

of the Pt–Rh bulk phase diagram the asymmetry is reflected by

the fact that the D022-phase is present at a 1:3 stoichiometry of

platinum to rhodium, while it is not at 3:1. The model assumes a

rigid lattice and thus neglects possible relaxation effects. Please

refer to [4] for a more detailed description of the model.

Parameterization of the model
In order to apply our model to particles, we must parameterize

the site-energy constants  and . These constants are not

needed for bulk calculations as they would only contribute a

constant energy term to the total lattice energy. This is different

in the case of a particle. The parameters needed for modeling

the mixing and ordering behavior are taken from the bulk para-

meterization. These are the  with n = 1, …, 4 and , 

and their values are given in Table 1.

Table 1: The interaction mixing parameters used in our calculations in
meV.

0.1487 1.4730 1.2192 −1.3731 −1.5533 −0.5907

We obtain the site-energy constants from the cohesive energies

Ecoh = ε12 and the surface energies for the fcc(111) and fcc(100)

surface σ111 = ε12 − ε9 and σ100 = ε12 − ε8. The used values for

the surface energies given in Table 2 were taken from [27], in

which they were obtained by the scalar relativistic full-poten-

tial screened Korringa–Kohn–Rostoker method (FP-KKR) and

by using the local-density approximation (LDA). For the cohe-

sive energies we assumed  = 5.84 eV and  = 5.75 eV.

In order to calculate the configuration of a Wulff-shape particle

for a face-centered cubic lattice, i.e., a truncated octahedron, we

also need the site-energy constants for Z = 7 and Z = 6.

However, for future applications to simulations of particles with

varying shape it seems appropriate to determine the site-energy

constants for all Z directly. Therefore, we determine the site-

energy constants for all Z, other than 12, 9 or 8, by fitting a site-

energy function with a square-root dependence on the coordina-

tion to the three values we already have. In addition we demand

that  =  = 0. All the determined site-energy constants are

given in Table 3.

Table 2: Surface energies of platinum and rhodium taken from [27]
(FP-KKR).

element surface energy
(eV/atom) energy (J/m2)

Pt (111) 0.957 2.31
Pt (100) 1.272 2.65
Rh (111) 1.034 2.65
Rh (100) 1.404 3.12

Table 3: The site energy constants  and  in eV.

Z  (eV)  (eV)

0 0.0 0.0
1 −1.119 −0.963
2 −1.722 −1.532
3 −2.241 −2.036
4 −2.716 −2.506
5 −3.162 −2.955
6 −3.588 −3.346
7 −3.867 −3.708
8 −4.568 −4.346
9 −4.883 −4.716
10 −5.171 −5.029
11 −5.546 −5.423
12 −5.840 −5.750

Simulation
We have calculated a bulk phase diagram including configura-

tional entropy by thermodynamic integration in the semi-grand

canonical ensemble before [4]. The approach was formerly

proposed by van de Walle et al. [28], but applied within the

framework of the cluster-expansion formalism. The cluster-

expansion formalism is not easily applicable in the vicinity of a

surface or an edge of a particle due to the lack of symmetry,

although there are approaches that also include “surface

figures” in the cluster expansion. The model we introduced is

able to accurately calculate the equilibrium configuration of
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Figure 2: The vertical lines in the plot represent equipotential lines of the free energy for constant difference in the chemical potential between the two
species Pt and Rh. These were obtained by thermodynamic integration in the semi-grand canonical ensemble. The phase diagram for the large
particle (9201 atoms, d = 7.8 nm) was constructed from these lines and the order parameters, and is represented by the thicker solid line.

binary-alloy particles. It features full control over the mixing

properties and surface-energy differences of the pure elements,

which is the driving force for surface segregation in our model.

The dependency of the phase diagram on particle size is exam-

ined on the basis of three nanometer-sized particles with n =

9201, 2075 and 807 atoms, corresponding to a diameter of 7.8,

4.3 and 3.1 nm, respectively. The cluster shape was obtained

from a face-centered cubic lattice by the Wulff construction by

using the (100) and (111) surface energies for platinum and

rhodium. The cluster shape was fixed during the simulations.

The ratios between the (100) and the (111) surface energies are

very similar for platinum and rhodium (Pt: 1.33, Rh: 1.36), thus

resulting in the same Wulff-shape for the particle sizes we used.

At low temperature it is therefore justified to constrain the

particle shape to the Wulff-shape even when varying compos-

ition. From the initial cluster shapes with a random alloy con-

figuration we performed thermodynamic integration in the

semi-grand canonical ensemble. This ensemble fixes the total

number of atoms N, but not the individual number of atoms

NPt and NRh. The difference in the chemical potentials

Δμ = μPt − μRh is used as a control variable in addition to the

temperature T. The method allows the calculation of the total

free-energy surface as a function of temperature and compos-

ition. Although there is not a simple equation for the high-

temperature expansion of the free energy in the case of parti-

cles, we are still able to perform thermodynamic integration to

obtain free-energy differences. The integration is performed

from T = 285 K down to T = 50 K in 5 K steps. For each

temperature step the system was equilibrated for 900 MC steps

and then data was averaged over 100 MC steps, taking five data

points per MC step by using a simple Metropolis Monte Carlo

algorithm. In the semi-grand canonical ensemble a trial step

consists of a single spin flip, i.e., changing a Pt atom to a Rh

atom, or vice versa.

The lines that are finally obtained in the plot of temperature

against concentration (Figure 2) are equipotential lines for

which the difference between the chemical potentials

Δμ = μPt − μRh of the two constituents is constant. These lines

do not cross the two-phase regions, and therefore the line close

to a void region can be taken as a phase boundary. In addition

we evaluated the Warren–Cowley order parameters to map out

the phase boundary between the disordered phase and the

ordered phases. The three phase diagrams for different particle

sizes are shown in Figure 3. In order to validate the obtained

phase diagrams and to obtain atomic structure data in the two-

phase regions, which are inaccessible in the semi-grand canon-

ical ensemble, we also performed simulations in the canonical

ensemble. Some representative particle configurations are

shown in Figure 4. However, the low-temperature ordered

phases of Pt–Rh are probably not observable in experiment due

to the fact that vacancy diffusion is frozen at these tempera-
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tures, making it impossible to establish thermodynamic equilib-

rium in the particle within an observable time frame. Neverthe-

less, the results should give us valuable general insights into

ordered-phase equilibria in nanoparticles.

Figure 3: Calculated phase diagrams of Pt–Rh for three different
particle sizes of 9201, 2075 and 807 atoms, corresponding to diame-
ters of 7.8, 4.3 and 3.1 nm.

In the following, Warren–Cowley short-range order parameters

(WC-SRO) [30] are used for the analysis of short-range order in

the bulk and in particles. The WC-SRO are originally defined as

(4)

where  is the probability to find a B atom as a neighbor of

a given A atom, and xB is the concentration of B atoms. It can

be shown that in the case of a bulk material it does not matter

whether the parameter is centered at an A or a B atom, i.e.,

(5)

However, for finite systems with a surface, generally

, as was discussed by Atasanov and Hou recently

[31]. They also suggested the use of a concentration-averaged

short-range order parameter

(6)

as a more suitable measure for the order in the core of the parti-

cles. In this paper, we use both definitions of the order parame-

ters in order to obtain the maximum amount of information

about the system. Another approach to probe ordering transi-

tions in particles is to use the conventional ordering parameter

as in Equation 5, but to restrict the calculation of the parame-

ters to a small core region of the particle. This approach was

also applied to validate our findings (see below in Figure 10). It

has the advantage that the parameters converge to the bulk

values of the corresponding ordered phases at low temperature;

however, it also has the drawback that higher-order parameters

cannot be calculated anymore, the statistics become weaker, and

it may not be comparable to experimental data, to which surface

atoms contribute.

Results and Discussion
Nanoparticle phase diagrams
The calculated phase diagrams for nanoparticles show some

features that are different from those in the bulk. These features

may be explained in terms of the existence of surfaces and

interfaces, and by finite-size effects. The interplay of surface

segregation, surface ordering and bulk ordering is crucial. In

order to explain the different phase-diagram features, it is

instructive to compare the phase diagram for the bulk and for

different particle sizes (Figure 5 and Figure 3) and to have a

look at some particle configurations at a low temperature, as

shown in Figure 4 for T = 50 K (see Figure 1 for the structure of

the ordered phases D022 and 40). The phase diagram for a

particle of 9201 atoms with a diameter of 7.8 nm is compared to

that of the bulk alloy in Figure 5. The ordering temperature in

the case of a large particle consisting of 9201 atoms shifts down

from the bulk temperature. The bulk ordering temperature of

bulk Pt–Rh was calculated to be 238 K at 1:1 stoichiometry for

the 40-structure and 209 K at 25 atom % Pt for the D022-struc-

ture, whereas the maximum ordering temperatures for 7.8 nm

particles are 198 K at 35 atom % Pt concentration for the D022-

phase and 226 K at 59.5 atom % Pt for the 40-phase. This trend

towards lower ordering temperatures continues at smaller

particle sizes, which can be identified from the particle phase

diagrams in Figure 3 as well as from the short-range order para-

meters in Figure 8, Figure 9 and Figure 10 (see below).

The platinum solubility in a rhodium particle at low tempera-

tures is much larger than that in the bulk. The solubility does

not go to zero at zero temperature, but it hits the zero-tempera-

ture line at about 8 atom % platinum concentration. However,

the term “solubility” has to be interpreted differently for a

particle. For platinum concentration below 8 atom % at

temperatures as low as 50 K, the excess platinum atoms do not

dissolve inside the rhodium but they tend to stay at the surface

and form a completely ordered surface layer (Figure 4, parti-

cles 1 and 2). This is a consequence of the preferred segrega-

tion of platinum atoms. The reason for segregation in our model
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Figure 4: Equilibrium configurations of large particles with 9201 atoms at different concentrations and temperatures and their position in the nanopar-
ticle phase diagram. The numbers in the phase diagram correspond to the particle pictures below it.
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Figure 5: Calculated phase diagram of bulk Pt–Rh (solid line) in com-
parison to that of a particle consisting of 9201 atoms, 7.8 nm diameter
(dashed line).

is the difference between the surface energies of platinum and

rhodium. Thus, we have to associate the shift in the phase

boundary between the pure phase and the two-phase region with

the emergence of a surface phase and surface solubility for the

particle, not with an increase in the volume solubility. When the

platinum concentration is increased upward from zero, plat-

inum atoms tend to form ordered domains at the (100) facets

first (Figure 4, particle 1), because the difference in surface

energy is larger for the (100) surface as compared to the (111)

surface. We find some interesting features for the two-phase

equilibrium between the D022- and the pure rhodium phase in

the particle. In Figure 4, for particle 3, we see that pyramid-

shaped ordered D022-domains have formed below the (100)

facets. The ordered surface layer of the (100) facet is compat-

ible with D022-ordering. This is not the case for the (111)

facets, which is the reason why we see the domains form below

the (100) facets and not below the (111) facets, under which we

find pure rhodium. Additional energy would be needed to form

a phase boundary with the top layer of a (111) facet and a D022-

domain, as the order of the facet is not compatible with the

D022-order. Interestingly, the configuration with the pyramids is

energetically more stable than a core–shell two-phase equilib-

rium. At 18 atom % platinum concentration (Figure 4, particle

4) we see that one large D022-domain has formed that connects

two opposing (100) facets. Smaller D022-domains formed

below the remaining four (100) facets. There is a boundary

between the small domains and the large domain as they are

differently oriented. Both in the bulk and in the particle the for-

mation of a fully ordered D022 is possible from 25 atom % Pt

concentration upwards. However, in the case of a particle the

D022-phase extends over a much broader concentration range.

The trend continues when going to smaller particle sizes (see

Figure 3). The reason for this is again the existence of the

surface and its function as a reservoir for excess platinum

atoms. The larger broadening of the D022-region as well as the

shrinking of the D022/40 two-phase region for small particles

can therefore be attributed to the fact that the surface reservoir

for excess atoms is larger relative to the number of core atoms.

We can see that, while the (100) facets already consist entirely

of platinum atoms at 28 atom % total platinum concentration at

a temperature of 50 K (Figure 4, particle 5), excess platinum

atoms may still be incorporated into the (111) facets up to a

concentration of about 42 atom % total platinum concentration.

At this point the surface platinum concentration reaches a

maximum. The two-phase region between the D022- and the

40-phase reveals another interesting phenomenon: When the

platinum concentration is increased by only 2 atom % from 42

to 44 atom % the platinum concentration at the surface drops

while a two-phase equilibrium inside the particle is formed

(Figure 4, particle 7). When the total platinum concentration is

increased by another 2 atom % from 44 to 46 atom % the plat-

inum surface concentration is lowered even more while the two-

phase equilibrium inside the particle takes a core–shell shape.

This is consistent with a small interface energy between the

D022- and the 40-phase of only 3.4 meV per interface atom,

which has been estimated from the total energy of bulk simula-

tions within the two-phase region. The behavior of a decrease in

surface concentration, when the total concentration of platinum

is increased, is therefore related to the increasing size of the

40-phase core. A larger core is energetically more favorable

than a small one, even at the cost of drawing platinum atoms

from the surface inside the particle to the 40-core. The forma-

tion energy of the 40-phase counter balances the driving force

for surface segregation of platinum atoms, which is due to the

surface energy of platinum being lower than that of rhodium. In

reality, the size mismatch of platinum and rhodium may act as a

another driving force for surface segregation. Size mismatch,

however, is not accessible within a rigid lattice model. Above

46 atom % total platinum concentration the surface platinum

concentration increases again. At 60 atom % platinum concen-

tration we find a completely 40-ordered particle with a surface

layer of platinum (Figure 4, particle 9). The consequence of

having the top layer entirely filled with platinum is that the

40-phase does not broaden its concentration range when going

to smaller particle sizes as much as the D022-phase does

(compare Figure 3). Between the 40-phase and the pure plat-

inum phase the two-phase equilibrium is established as a

core–shell configuration (Figure 4, particle 10). Going to

temperatures above 50 K the configurational entropy starts to

play an increasingly significant role. In Figure 4, for particle 11

at 130 K the ordered surface phase and subsurface ordering

have vanished compared to the configuration at 50 K. In

Figure 4, for particle 12 and 14, it shows that the D022- and the
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40-phase close to their maximally stable compositions incorpor-

ate defect atoms in the core, as is to be expected. The core of

the two-phase core–shell equilibrium between the D022- and the

40-phase becomes unstable and diffuse at 130 K (Figure 4,

particle 13), but still both D022- and 40-type ordering can be

identified. In the two-phase region between the 40- and the pure

platinum phase the core also becomes diffuse, but a smaller

perfectly ordered 40-core can be identified (Figure 4, particle

15).

The size-dependent features, which are observed in the

nanoparticle phase diagrams when the particle size decreases

can be summarized as follows:

• The ordering temperatures of ordered phases in the

particle shift downward.

• The global concentration stability ranges of the ordered

phases broaden.

• The stable phases shift towards higher concentrations of

the segregating element.

• The two-phase regions in the phase diagram shrink.

• An ordered surface phase emerges at low concentrations

of the segregating element.

We conclude from the simulations that these features are likely

to be found in ordering systems with a surface segregation ten-

dency of one element.

Short-range order and order–disorder transi-
tions
We calculated the short-range order parameters for the three

particle sizes using the definitions for ,  and ,

given in Equation 5 and Equation 6, which are equivalent for

bulk alloys but not for particles, and core-restricted short-range

order parameters for validation purposes. A full plot of all

concentration-averaged WC-SRO parameters up to 8th neigh-

bors for the large 7.8 nm particle is shown in Figure 6. In order

to show how the particle size affects the order–disorder tran-

sition of the 40-phase we investigated two cases: First, we

studied the order parameters at constant composition xPt = 0.5

for the three particle sizes (Figure 7). Second, we adjusted the

composition for each particle size to coincide with the

maximum of the critical temperature, i.e., xPt = 0.595, 0.66,

0.69 for the 7.8, 4.3 and 3.1 nm particles (Figure 8). For clarity

only the two parameters for 6th and 8th neighbors that show the

strongest variation at the transition (lmn = [222] and [400]), are

shown in the plots. In both plots we look at the concentration-

averaged order parameter . At 50 atom % platinum a tran-

sition can still be observed in the short-range order parameters

at around 218 K for the 7.8 nm particle even though the ordered

40-phase in the core of the particle is now off-stoichiometric

due to platinum segregation at the surface. For the 4.3 and

3.1 nm particle such a transition cannot be observed due to the

enhanced surface segregation, which shifts the composition in

the core of the particle into the two-phase region between D022

and 40. This is an example of what can go wrong when bulk

phase diagrams are used for the interpretation of the phase

behavior of nanoparticles. In the bulk composition of the

ordered 40-phase we do not find a single perfectly ordered

phase for nanoparticles due to the concentration shift from

surface segregation. In the second case at the compositions of

maximum critical temperatures we find that for all particles an

order–disorder transition can clearly be identified from the

short-range order parameters (Figure 9). While for the bulk we

see a jump in the order parameters, which indicates a first-order

transition, the transition becomes continuous for the large

particle with 9201 atoms. As the size of the particle is decreased

the transition becomes increasingly smoothed out. In addition,

we have also calculated the conventional short-range order

parameters while restricting their evaluation to a small core

region of the particles consisting of 85 atoms. In this case, the

higher-order parameters are not defined anymore, but we can

still evaluate them up to 4th neighbors (Figure 10). Comparison

with the concentration-averaged order parameters in Figure 8

shows the same behavior in terms of the ordering temperatures

obtained. The main difference is that the core-restricted parame-

ters converge rather closely to the bulk values of the ordered

phase, which is expected for a completely ordered core when

surface atoms do not contribute.

Figure 6: All concentration-averaged Warren–Cowley short-range
order parameters  up to 8th neighbors for a Pt–Rh nanoparticle
with 9201 atoms (corresponding to a diameter of 7.8 nm) in equilib-
rium versus temperature. The phase transition at T ≈ 226 K is clearly
visible.
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Figure 7: Comparison of the  (lower points) and  (upper
points) WC-order parameters versus temperature for different particle
sizes. Composition is fixed at 50 atom % Pt for all sizes. For the
medium size and the small particle a transition cannot be identified.

Figure 8: Comparison of the concentration-averaged order parame-
ters  (lower points) and  (upper points). The Pt concentra-
tion is chosen such that for all particles the phase transition is
observed at the maximum critical temperature of the 40-phase. No
shift in magnitude of the concentration-averaged parameters is seen
as is the case for non-concentration-averaged  in Figure 9.
Compare also to the core constrained short-range order parameters in
Figure 10.

For comparison, looking at the original non-concentration-aver-

aged WC-SRO parameters  in Figure 9 we see that with

decreasing size all of the order parameters  shift towards

smaller values. This is a consequence of surface segregation.

The segregation of platinum to the surface increases the proba-

bility of a Rhodium atom to see a Rhodium atom on one of its

neighbor shells. Looking at the  we would see a shift

towards larger values. Taking the weighted average

 removes the surface segregation

bias, such that the plot becomes symmetric about the zero line

of the y-axis, as in Figure 8.

Figure 9: Comparison of the WC-order parameters  (lower points)
and  (upper points). The Pt concentration is chosen such that for
all particles the phase transition is observed at the maximum critical
temperature of the 40-phase. In contrast to the  in Figure 8, the

 in this plot are biased due to surface segregation.

Figure 10: Comparison of the order parameters  (lower points)
and  (upper points) constrained to a core region of 85 atoms. The
Pt concentration is chosen such that for all particles the phase tran-
sition is observed at the maximum critical temperature of the 40-phase
in the same way as in Figure 8. The ordering temperatures are the
same as the ones obtained from the concentration-averaged order
parameters in Figure 8.

Finally, the WC-SRO parameters at a temperature as high as

923 K were calculated (Figure 11) in order to be able to

compare to experimental data [32,33] and to our former simula-

tion for bulk Pt–Rh [4]. We find that the  and  show

significant shifts away from their bulk values. While all the

 shift to smaller (more negative) values the  shift to

larger values. This can be understood based on the same argu-

ment as outlined above. Surface segregation of platinum, which

is still significant at these high temperatures, decreases the

probability of finding platinum in the core. The effect becomes

more pronounced with smaller particle sizes. Again, taking the
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concentration-weighted average  removes the shifts

almost entirely (Figure 12), which shows that the short-range

order in the core of the particles is essentially bulk-like. Only a

very small shift towards more negative values remains. The fact

that most of the effect of surface segregation on the short-range

order is averaged out when concentration-averaged short-range

order parameters are used, may be important for experiments in

which this quantity can be measured.

Figure 11: Comparison of the 8 WC-order parameters  and 
of three different particle sizes and bulk material at 923 K. The Pt
concentration is 50 atom % in each case. The concentration of Pt on
the surface layer is 64.9, 61.4, and 60.6 atom % in order of decreasing
particle size.

Figure 12: Comparison of the 8 averaged  WC-order parame-
ters of three different particle sizes and bulk material at 923 K. The Pt
concentration is 50 atom % in each case. A decrease of  with
decreasing particle size is clearly visible. The concentration of Pt on
the surface layer is 64.9, 61.4, and 60.6 atom % in order of decreasing
particle size.

Conclusion
In this paper we discussed the size-dependency of the Pt–Rh

phase diagram as obtained from lattice Monte Carlo simula-

tions. Our results may serve as a paradigmatic test case for the

change in phase transformation lines with a change in particle

size. The broadening of the concentration range of ordered

phases is concluded to be a consequence of the presence of the

particle surface, which serves as a reservoir for excess atoms.

When the surface is entirely covered with atoms of the segre-

gating element the surface looses its function as a reservoir for

excess atoms. This is consistent with a broadening of the D022-

phase concentration range, while little broadening is observed

for the 40-phase. As a consequence, the D022/40 two-phase

region shrinks at the cost of the expanding D022-phase, which

shows a greater range of compositional stability because the

surface reservoir is larger relative to the total number of atoms

in the particle. It was also shown that the two-phase equilib-

rium in a particle may have complex morphologies (compare,

e.g., the different shapes of the two-phase equilibria in Figure 4,

particles 3, 4, 7 and 8). Finally, we found evidence that the for-

mation of a two-phase core–shell equilibrium inside the particle

may significantly affect surface segregation. In the present case

of a core–shell equilibrium between the 40- and the D022-phase

the particle tends to increase the 40-phase core volume by

diminishing the amount of segregated atoms and thus counter-

balancing the driving force for segregation due to surface

energy differences.

From the analysis of the Warren–Cowley short-range order

parameters we found that the first-order bulk transition becomes

continuous and increasingly smooth with decreasing particle

size. When surface segregation of one element is present the

ordered phase at 1:1 stoichiometry can only be stabilized by

adjusting the global concentration in order to compensate for

the lack of one species due to surface segregation. The

Warren–Cowley order parameters  and  as classically

defined by Cowley [30] show an increasing shift in their magni-

tude with decreasing particle size, which can almost entirely be

removed by using concentration-averaged order parameters as

defined by Hou et al. recently [24]. Analysis of the concentra-

tion-averaged short-range order parameters at 923 K showed

that at these high temperatures the short-range order in the core

of the particle is essentially bulk-like.
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